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SUMMARY

The dynamic behavior of the wave journal bearing was determined by running a three-wave bearing with
an eccentrically mounted shaft. A transient analysis was developed and used to predict numerical data for the
experimental cases. The three-wave journal bearing ran stably under dynamic loads with orbits well inside the
bearing clearance. The orbits were almost circular and nearly free of the influence of, but dynamically
dependent on, bearing wave shape.

Experimental observations for both the absolute bearing-housing-center orbits and the relative bearing-
housing-center-to-shaft-center orbits agreed well with the predictions. Moreover, the subsynchronous whirl
motion generated by the fluid film was found experimentally and predicted theoretically for certain speeds.

SYMBOLS

B damping coefficient between bearing housing and its support, N⋅s/m

Bij(i  = r ,t; j  = r ,t) film damping coefficients, N⋅s/m

C bearing radial clearance, m

Fr , Ft fluid film force components along and perpendicular to line of centers O1 – O (fig. 1), N

Fi 0(i  = r,t ) steady-state fluid film force components along and perpendicular to line of centers O1 – O, N

Fζ, Fη fluid film force components along and perpendicular to line O0 – O (fig. 1), N

h fluid film thickness, m

K stiffness coefficient between bearing housing and its support, N/m

Kij(i  = r,t ; j  = r,t ) film stiffness coefficients, N/m

M bearing-housing total mass, kg

O bearing-housing center (fig. 1)

O0 fixed center of rotation (fig. 1)

O1 shaft center (fig. 1)

p fluid film pressure, Pa

R shaft radius (bearing normal radius), m

r coordinate along line of centers

S space (displacement) between shaft center O1 and bearing-housing center O, m

Si (i  = r,t ) S components along and perpendicular to line of centers O1 – O, m

t time, s; coordinate perpendicular to line of centers

V velocity between shaft center O1 and bearing-housing center O, m/s
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Vi (i  = r,t ) V components along and perpendicular to line of centers O1 – O, m/s

Vn difference between shaft surface and bearing surface speed projected on perpendicular direc-
tion to shaft surface, m/s

Vθ component of shaft surface speed along its circumference, m/s

z axial coordinate parallel to shaft axis

ε bearing eccentricity relative to shaft (relative movement) (fig. 1), O1 – O, m, also bearing
line of centers

ε/C bearing sleeve-to-shaft eccentricity ratio

ε0 bearing run-out (absolute movement) (fig. 1), O0 – O, m

ε0/C bearing-housing absolute eccentricity ratio, ε0 = O0 – O

ζ, η axes along and perpendicular to direction O0 – O (fig. 1)

θ angular coordinate along shaft circumference, rad

µ fluid film dynamic viscosity, N⋅s/m2

ρ fixed shaft run-out (fig. 1), O0 – O1, m

ϕ angle between line of centers O1 – O and O0 – O (fig. 1), rad

ψ rotation angle of O0 – O around O0 (fig. 1), rad

Ω rotation angle of O0 – O1 around O0 (fig. 1), ωt, rad

ω angular rotation speed (fig. 1), rad/s

INTRODUCTION

The wave bearing concept has been under development since 1992. Thus, the steady-state and dynamic
performance under fixed side load (refs. 1 and 2) and the influence of both the number of waves and the ratio
of wave amplitude to radial clearance (refs. 3 and 4) have been analyzed. Moreover, the steady-state charac-
teristics of the wave journal bearing and its dynamic stability have been experimentally measured. Good
agreement was found between the experimental data and theoretical predictions (refs. 5 to 8). In addition,
the experimental work revealed good dynamic behavior of the wave bearing when subsynchronous whirl
motion occurred. The wave bearing performed well, keeping the orbit of the subsynchronous motion inside
the bearing clearance (refs. 7 and 8). Consequently, the wave bearing should perform well under the dynamic
loading conditions that often occur in most rotating machinery. Any rotor can be subject to a dynamic load
caused by an unbalance, or a run-out, of the shaft. This dynamic load is a rotating load that has a rotational
speed equal to the rotor speed. Such a load can be simulated by running the bearing with a shaft that has a
fixed run-out. Therefore, a transient analysis was performed to predict bearing behavior under a rotating load.
Then an experiment was conducted to record the orbits of the bearing-housing center when the shaft has a
known fixed run-out.

ANALYSIS

Bearing-housing-center movement can be studied by using the motion equation of the center along and
perpendicular to the radial direction O0 – O (axes ζ and η in fig. 1):
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Also, figure 1 shows that the eccentricity ε = O1 – O (where O1 – O is the line joining the shaft center O1 and
the bearing-housing center O) and that the shaft run-out ρ = O0 – O1. Assuming that the motion starts from the
downward vertical where the shaft and the bearing are concentric (ε = 0), when the shaft rotates around O0

with the angular speed ω, ρ makes the angle Ω and drives the bearing so that ε0  makes the angle ψ.
The governing equations (1) are two scalar, coupled, nonlinear ordinary differential equations. These equa-

tions are integrated simultaneously by using a fourth-order Runge-Kutta method for known values of M, C, Fζ,
Fη, K, and B and initial values of ε0, ψ, dε0/dt, and dψ/dt (ref. 9). The fluid film forces applied to the bearing
surface are
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The bearing steady-state force and dynamic stiffness and damping coefficients can be computed by inte-
grating the Reynolds pressure equation at each time step location of the shaft with respect to the bearing. This
equation, assuming the gas will expand isothermally, is
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The Reynolds equation (4) can be integrated by using its complex form and a small perturbation technique.
This procedure is described, for instance, in reference 10.

The solution procedure can start with an input data set (bearing length, diameter, radial clearance, shaft
turning speed, shaft run-out, and the time step). In addition, a set of starting values at time = 0 are required:
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Then, at each time step, where ε0, ψ, and Ω (Ω = ωt) are known, the O0O1O triangle (fig. 1) is known, and
all geometrical parameters as well as displacements and velocities can be calculated. Therefore, the Reynolds
equation (4) can be integrated over the fluid film. Then, all parameters of the motion equation (1) are known
as well as the starting values for the next time step (ε0, ψ, and their time derivatives Ω). The procedure is
repeated until the orbits are completed.
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APPARATUS

The wave bearing rig described in references 5 to 8 was used to perform the experimental work. The axis
of the spindle that drives this rig is vertical, and the experimental bearing housing is mounted on the rig table
and supported by two pressurized thrust plates. This configuration keeps the bearing housing stiff in the axial
and angular directions but allows it to move freely in the radial direction. The experimental shaft is an exten-
sion of the rig spindle shaft. It is mounted into the tapered end of the spindle shaft with a fixed run-out (for this
experiment 11±0.1 µm). A cross section by a horizontal plane of the experimental bearing is shown in figure 2.
The fixed rotation center for the system is O0. The centers of the shaft and the bearing housing are O1 and O,
respectively. The shaft run-out O0 – O1 is fixed.

The goal of this work was to record and predict the absolute and relative orbits of the bearing-housing
center O. The motion of the center O can be observed like an absolute motion for instance with regard to
the center of rotation O0 or like a relative motion with regard to the center of the shaft O1. Figure 3 shows the
experimental bearing setup. Two sets of light-beam proximity probes were used. Two probes were located at
90° in the bottom side of the bearing housing and “looking” at the shaft. These probes detected the orbit of
the bearing-housing center relative to the shaft center (O – O1). The second set of two probes were located
also at 90° but held by supports fixed on the rig table and “looking” at the bearing housing. These latter probes
detected the absolute orbit of the bearing-housing center (O – O0). A polished circumferential strip was made
on the outside bearing-housing surface to avoid asperity noise from its roughness. The light-beam probes were
calibrated by using the known fixed run-out of the shaft. The displacement of the shaft was measured with a
precision of 0.1 µm. The theoretical predictions of the orbits were made through a transient analysis of the
bearing-housing-center motion.

RESULTS AND DISCUSSION

The experimental bearing was 51±0.01 mm in diameter, 58±0.01 mm in length, 20±1 µm in radial clear-
ance, and 2.2±0.01 kg in mass. The bearing had three waves with a 0.5±0.07 ratio of wave amplitude to radial
clearance. The shaft was set with an 11±0.1 µm run-out. The damping, B in eqs. (1), in the bearing-housing
support and connection system was found to be 0.05 N⋅s/m. The stiffness, K in eqs. (1), had little influence on
the bearing orbits and was approximately zero. The top proximity probes (fig. 3) produced 500 mV for 5.78- and
4.78-µm displacements in the horizontal and vertical directions, respectively, and the bottom probes produced
500 mV for 6.11- and 6.90-µm displacements in the horizontal and vertical directions, respectively. (Horizontal
and vertical directions refer to the directions on the oscilloscope photographs shown on the right sides of fig-
ures 4 and 5, 90° apart in the physical plane.

The test rig was run at four speeds up to 5540 rpm. Below 3100 rpm both the observed and predicted orbits
of the bearing-housing center showed that a subsynchronous whirl motion took place inside the bearing clear-
ance. Figure 4 shows both the predicted and observed orbits for relative and absolute motion of the bearing-
housing center when the shaft rotated at 2156 rpm. When the speed increased above 3100 rpm, the motion
stabilized, as shown in figure 5 for a shaft speed of 5539 rpm.

Both the absolute and relative observed orbits of the bearing-housing center are shown as oscilloscope
photographs on the right sides of figures 4 and 5. On the left sides of these figures the computed orbits are
presented with a time step of 0.000001 s (10 µs) and for 30 000 steps. The experimental orbits appeared as
ellipses rather than circles because of the difference in the probe sensitivity in the horizontal and vertical
directions mentioned above. Both experimental orbits in figure 4 have a specific pattern caused by subsyn-
chronous whirl motion. The transient analysis also revealed this pattern. Both the experimental and theoretical
absolute orbits (fig. 4(a)) were within a radius of 5 to 12 µm. Both the experimental and theoretical relative
orbits (fig. 4(b)) were within a radius of approximately 5 µm.

The bearing stability increased as the running speed of the rig increased. Figure 5 shows the results for
5539 rpm. The experimental orbits were perfectly stable. The shaft run-out made large absolute orbits of the
bearing housing (right side of fig. 5(a)). However, the radius of the relative orbits was approximately 2.5 µm
(right side of fig. 5(b)) despite the 11±0.1 µm shaft run-out (i.e., the bearing followed the shaft very well). The
predicted orbits, shown on the left side of figure 5, matched very well with the observed orbits. The theory also
showed that the bearing would run stably. After a couple of rotations from the starting point the orbits were
stable, keeping almost the same path.
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The relative orbits of the bearing housing increased but the absolute orbits decreased as the speed
increased. This effect showed the influence of both external damping and bearing inertia on the magnitude
of orbit radius. In addition, the bearing actually ran more and more stably as speed increased, and the theory
showed that the number of rotations before the bearing reached a stable orbit would diminish as speed
increased.

All runs showed only a small influence of the bearing wave shape on the orbit shape despite the experi-
mental bearing’s large wave amplitude ratio, 0.5±0.07. This result confirmed that a wave bearing with few
waves, such as three, worked well under dynamic loads. The bearing behaved in such a way as to average the
influence of the waves.

Two types of shaft-centered motion can be defined with respect to the center of the bearing: (i) stable
unbalance or run-out orbits (e.g., fig. 5(b)), where the center of unbalance rotates at shaft frequency; and
(ii) fluid-film-induced unstable whirl orbits (e.g., fig. 4(b)) that are superimposed over the stable unbalance or
run-out orbits at a specific frequency different from the rotation frequency. The unbalance motion (i) is seen in
each graph, but the unstable whirl (ii) occurs only at specific rotational speeds.

CONCLUSIONS

The dynamic behavior of the wave journal bearing was determined by running a three-wave bearing with
an eccentrically mounted shaft. The following conclusions were reached:

1. A dynamically loaded three-wave journal bearing can run stably, averaging its behavior when the
wave exposure to the load is changing. The orbit radius of the relative motion between the shaft and
the sleeve is smaller than the bearing clearance, and the motion is contained within the bearing
clearance. The orbits are almost circular and nearly free of, but dynamically dependent on, the influ-
ence of bearing wave shape.

2. Good agreement between experimentally observed and theoretically predicted orbits was found at all
tested speeds for both relative and absolute motions.

3. The subsynchronous whirl motion influences the bearing-housing-center orbits if the bearing speeds
are in the region where the bearing itself is susceptible to subsynchronous whirl instability. When the
bearing runs under such circumstances, the orbits show a specific pattern. This pattern was observed
experimentally and was also confirmed theoretically by the transient analysis.
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   center orbits.
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